

Containerised Bio Applications in HPC Environment

CSC – Suomalainen tutkimuksen, koulutuksen, kulttuurin ja julkishallinnon ICT-osaamiskeskus

Outline

- Basic introduction to (bio)containers
- Searching pre-existing biocontainers
- Deploying (running) biocontainers in HPC environment
 - Containers availbale as modules
 - Custom-made containers
- Mounting/binding host volumes

CSC

Basic Introduction to (Bio)container

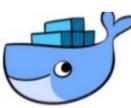
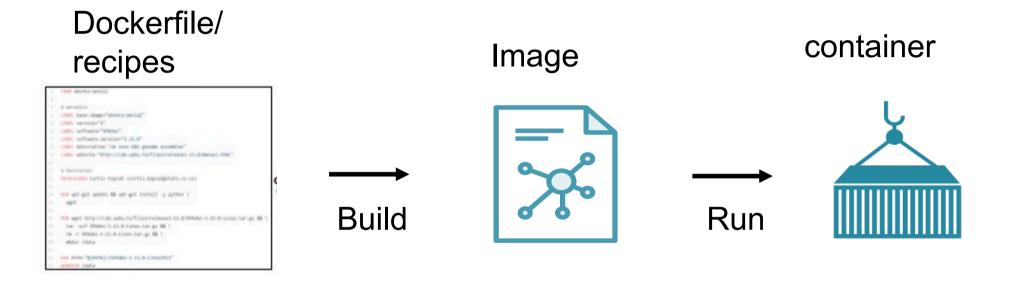

Some Basic Terminology

Image : self-contained snapshot of your full application, packages and dependencies

Container: A running instance of an image

Container Engine

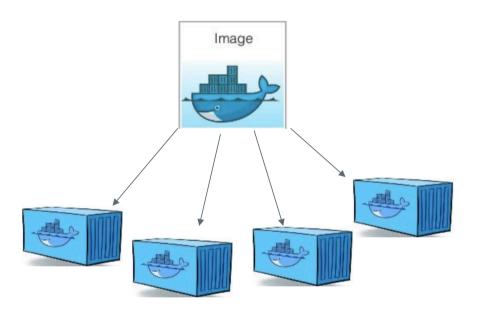
Creates, ships and runs containers deployable on a physical or virtual, host locally, in a datacenter or cloud service provider



Registry Service:

Cloud or server based storage and distribution service for your images:

Central Dogma of Containerisation


CSC

Two containerisation platforms

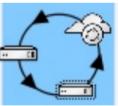
- Docker image built from dockerfiles
- Singularity image built from singularity recipes (deffiles)

(docker) Image vs. Container

- A n image is an immutable (unchangeable) file that contains the source code, libraries, dependencies and any tools needed for an application to run.
- Docker container is a Docker image brought to life; A runnable instance of image
- You can create as many number of containers as necessary from a image

Benefits of Running a Software as Container

Light-weight (No OS to boot)


Effiecient (Less OS overhead)

Portable

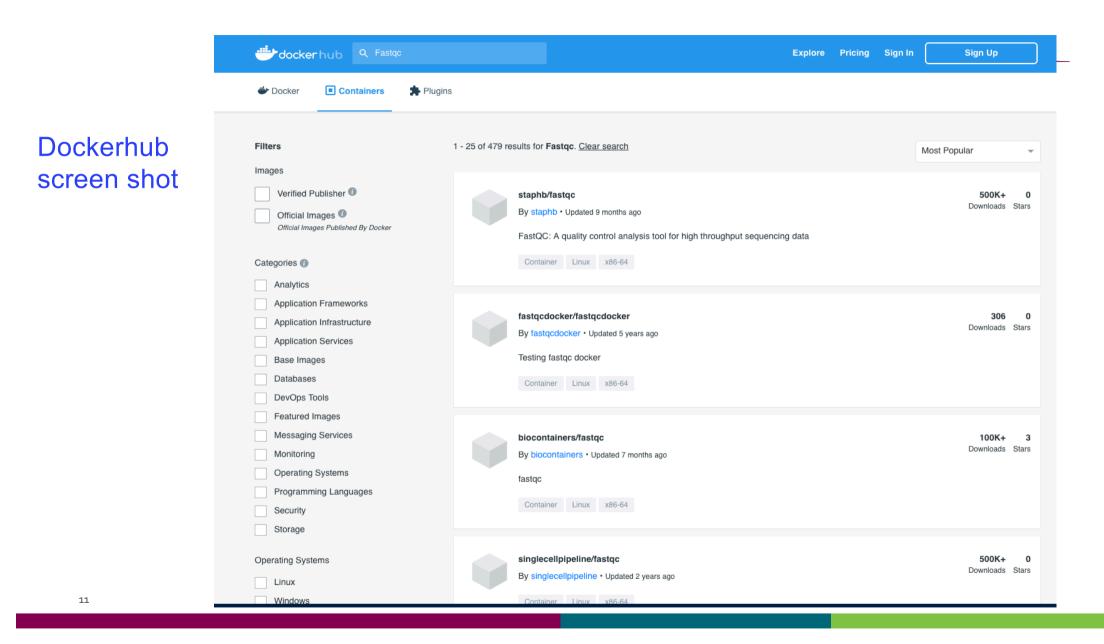
(Faster scaling)

Deployment flexibility

(Less dependencies between process layers)

Searching Pre-existing Biocontainers

CSC

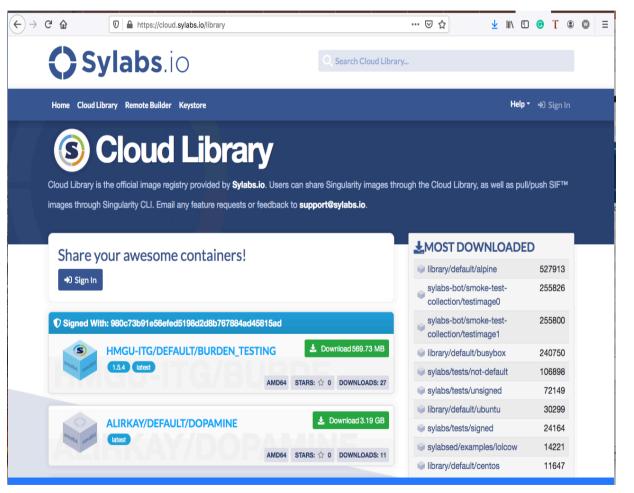

Biocontainers: Bioinformatics Containers

- A community-driven effort
- Focus is to create and manage bioinformatics software containers
- Focus on popular Omics' methods (Genomics, proteomics, metagenomics, metabolomics)
- Can be integrated into bioinformatics pipelines and different architectures
- Provides ready-made containers for bioinformatics community

QUAY registry (https://quay.io)
Dockerhub (https://hub.docker.com/)

Docker Hub

- A registry from Docker
- <u>https://hub.docker.com/bio</u>
- A centralized management of user accounts, image chesums and public/private repositories
- Not all images can work with Singularity
 - \odot Applications with root access
 - $\circ~$ Applications with entrypoints



QUAY Registry

- Quay (Red Hat) is a container image registry
- a scalable open source platform to host container images across any size organization
- Create your own public repositories
- Provides CI support for automated builds for BioConda GitHub
- All Biocontainers are docker-based and are publicly available for free

Cloud Library from Sylabs

- Cloud Library is the official image registry provided by Sylabs.io
- A singularity hub
- https://cloud.sylabs.io/library
- Images should work normally

CSC

Singularity Hub

- Singularity Hub is no longer online as a builder service, exists as a read only archive
- More information: https://singularityhub.github.io/singularityhub-docs/
- Pullinng an image from: Singularity pull shub://

Singularity Hub Documentation

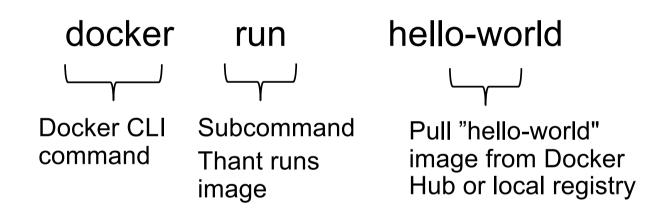
Hello there! It's so great that you are interest $\ensuremath{\mathsf{Singularity}}$ Hub.

chat on gitter paper plos-one

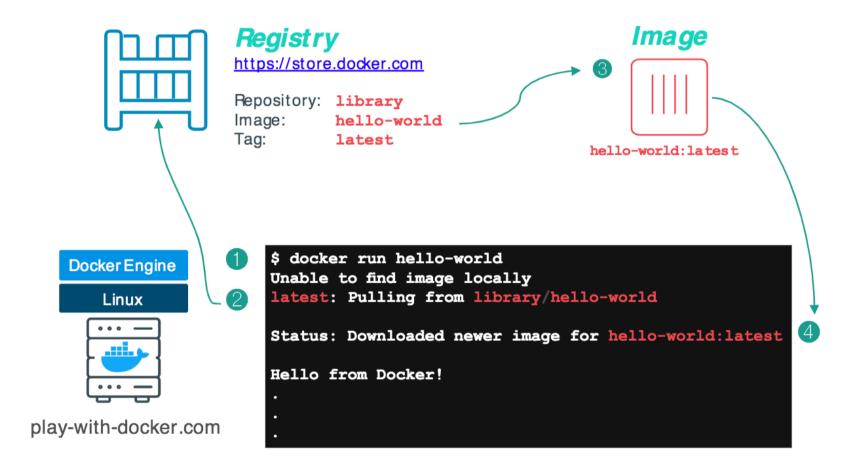
Deploying (running) Biocontainers in HPC Environment

Qualified Reference Format for Image

• A qualified image name consists of three main components:


- Image prefix: library/shub/library
- a registry location (hostname)
- a username (namespace)
- a image name (reponame)

Prefix://hostname[:port]/username/imagename[:tag]


- DockerHub registry: docker://username /image[:tag]
- Red Hat registry: quay.io/ username/image[:tag]

Docker Run Basics: Hello-World

Docker Run Basics: Internals of Hello-world

Working with Containers in CSC HPC Environment

- Singualrity is installed on Puhti (no need to load any modules)
- Available options
 - o Using modularised container (pre-installed for you in Puhti)
 - \circ Examples:

Chip-Seq-Pipeline
Cutadapt
QIIME 1
BRAKER
aTRAM

Using custom-made container (your own image or dowloaded from container registry)

Any biocontainer, Deepvariant, GATK ...etc

Getting Started with a Modularised Container

- Load module
 - \circ e.g., module load Cutadapt
- Module command sets some environment variables on host
 o e.g., SING_IMAGE and SING_FLAGS
- Use singularity_wrapper which has advantages than plain singularity command

 singularity_wrapper exec command_to_run
- Mounting datasets with SquashFS

 when input files are too big in numbers

Getting Started with a Custom-made Container

- Either you pull an image from registry or prepare one by yourself
- Pull/Build an image from registry repositories using singularity command

 singularity pull hello-world.sif shub://vsoch/hello-world
 singularity build r-base-latest.sif docker://r-base
- Note:
 - $_{\odot}$ URI beginning with library:// to build from the Container Library.
 - URI beginning with docker:// to build from Docker hub/Quay.io.
 - \circ URI beginning with shub:// to build from Singularity Hub.
- Executing a command

o singularity exec -B /path/to/module:/opt/module singularity_image actual_command

Mounting/binding volumes Binding external directories

Why Mounting/Binding Host Volumes

- No data persistence in container file systems
- Can't share any data with other containers/volumes
- Containers are stateless
- Decoupling container from storage

Mounting/Binding Host Volumes

Volume

 A Volume is a storage. This name comes from the Enterprise use-case. Volumes = Directories.

- Note that you can't mount any directory you like on HPC systems
 - $\circ~$ HOME, PROJAPPL, SCRATCH
- Binding/Mapping

 You can bind/map directories from the Host machine into a Guest container

osingularity run -B /host/path:/guest/path singularity_image.simg

Time for Tutorials on Some Bioapplication examples: R, Fastqc and deepvariant

Expected Learning

- Ability to use a containerised modular application
- Able to use a third-party container for your needs