

ROIHU

CSC's next supercomputer – coming 2026

DL2026 program

- User requirements and expectations are constantly evolving
 - Invest in an ecosystem that is flexible and meets new requirements
 - Service and functionality in focus
- Coherent overall infrastructure for Finnish research
 - Complementary with LUMI and other platforms

Cloud and **Allas services** to be invested in and improved as well

Roihu is an Eviden BullSequana XH3000 supercomputer

System overview docs.csc.fi/roihu

34 PETAFLOPS

33.9 x 10¹⁵ operations per second

Infiniband NDR interconnect

200 Gbit/s per CPU node 200 Gbit/s per GPU

DDN EXASCALER

6.5 PETABYTES

Fully flash-based Lustre storage

Vanuary -

486 CPU nodes

2 x 192-core AMD Turin 9965 4 x NVIDIA GH200 superchip

EVIDEN XH3000 SUPERCOMPUTER

9 RACKS

Fully liquid cooled – over 1 MW of power

Scratch disk

6 PiB

560 GB/s read perf 280 GB/s write perf Home & ProjAppl disk

0.5 PiB

120 GB/s read perf 100 GB/s write perf

Overview of solution – Roihu compute

Roihu is an Eviden XH3000 system

Next generation of Mahti (XH2000)

CPU partition based on AMD Turin 9965

- 2 x 192 cores per node
- AMD Zen 5 architecture has full AVX-512 support – twice the Flop rate vs. Mahti

GPU partition based on NVIDIA GH200

- 4 x H100 GPUs & 72-core Grace ARM CPUs per node
- Best price/performance solution for HPC & AI

Special resources

- 4 x high memory (3 TiB) and visualization nodes (NVIDIA L40), each with 2 x 7.68 TB local disks
- 307.2 TB disaggregate NVMe capacity

Roihu	
CPU compute nodes	486
CPU cores	186 624
Memory per node	768–1536 GiB
GPU compute nodes	132
GPUs	528
Memory per chip	120+96 GiB (CPU+GPU)
Scratch storage	6+ PiB
Home and ProjAppl	0.5 PiB
Node temp storage	960 GB
HPL aggregate perf.	33.9 PFlop/s

Overview of solution – Roihu storage

Fully flash-based Scratch storage for active data

- 10 times more bandwidth than Puhti Scratch
 - Much better performance for difficult I/O patterns
- 6 PiB total capacity
 - Can be expanded during lifetime of system
- ProjData special disk area on Scratch filesystem for storing and sharing datasets

Home and ProjAppl storage system

- Application installations and home folders
- Separated from Scratch
 - Ensures responsiveness even under heavy Scratch load
- 0.5 PiB total capacity
 - Very fast performance (100+ GB/s)

Node local storage resources

- All nodes have 960 GB local disks
 - For temporary files, not high-performance I/O
- Hugemem and visualization nodes have 15.36 TB highperformance NVMe storage
- 307.2 TB disaggregated NVMe capacity
 - Appears as local scratch from within a Slurm job

Features and functionality: what will **not** change

Pre-installed module environment

Comprehensive stack of scientific software available

 Programming environment will be similar to Mahti (GNU, AOCC, CUDA, OpenMPI, ...)

Slurm batch job scheduler

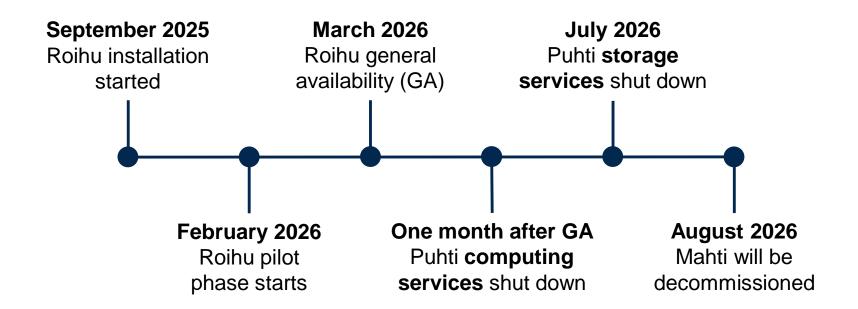
- Apptainer containers and Tykky supported
 - Improved documentation, base containers and container registry
 - Tykky will remain available and supported

Disk cleaning policy

- Will be enforced from the start, similar to current process on Puhti
- CSC will provide improved tools for moving data to/from Allas

Features and functionality: upcoming changes

- New hardware and OS (RHEL9)
 - Intel vs. AMD, GPU nodes will have ARM CPUs (Grace)
- Smaller, but much faster storage than Puhti & Mahti combined
 - Capacity to be expanded during Roihu lifetime

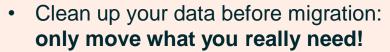

- Disaggregated fast storage service
 - Users can request local disk mounts from centralized storage
- Increased security
 - Short-term certificates required for SSH access
 - Optional login nodes with per-user container isolation
- Support for confidential data computing will be developed
 - Integration with Sensitive Data services
- FirecREST API for accessing Roihu compute and storage
 - Integrate workflows and web services to HPC

Roihu timetable (tentative)

- Roihu installed in same datacenter as LUMI will be brought up without disturbing Puhti & Mahti
- Aim is to enable users to migrate to Roihu without any break in HPC access

Roihu pilot phase

- The pilot phase is a key part of Roihu's acceptance testing
 - A heterogeneous and realistic workload will help CSC to improve and ensure the system's readiness
- Selected pilot projects will get:
 - Early access to Roihu and large-scale resources which will only be available during the pilot phase
 - Opportunity to do impactful science while helping CSC shape the permanent user environment of Roihu
 - Each project will be assigned a CSC specialist as a direct line for questions and guidance
- Proposals will be reviewed for technical suitability, readiness and scientific potential
 - Projects must be ready to setup their environments quickly, run jobs independently, and provide feedback to CSC

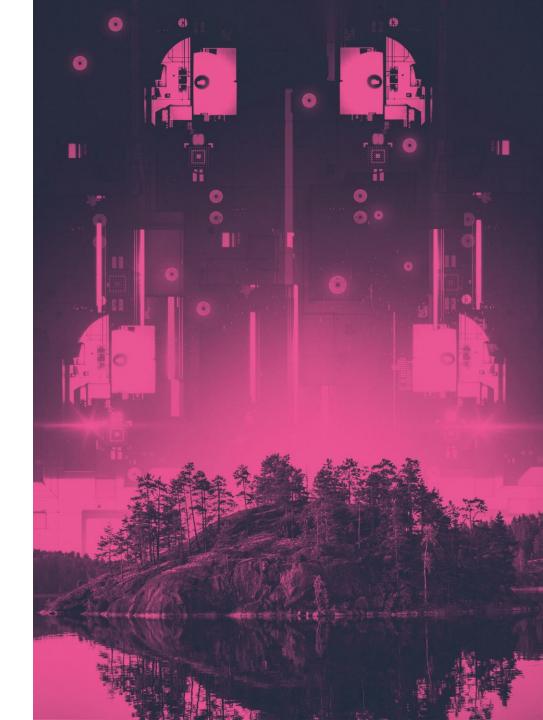

Apply for pilot access by 28th of November! research.csc.fi/roihu-pilot

The pilot phase will run for about four weeks starting at the end of February 2026

How to prepare for Roihu migration?

Data migration

- Roihu has less disk space than Puhti & Mahti combined, and stricter criteria for granting extended quotas
- Existing quota extensions will not be automatically moved to Roihu
- As a general rule, data should be moved directly to Roihu (not via Allas)
 - Familiarize with data transfer utilities in advance: docs.csc.fi/data/moving
 - Detailed Roihu migration guide coming later


- New hardware, OS, module stack
 - Prepare to recompile your own software
 - Check if/how your GPU code can run on the GH200 nodes (ARM)
 - Containerized Python environments (Tykky) and other Apptainer containers might work as is (except on GPU nodes)
- New Slurm partitions old batch scripts should not be expected to work
 - CSC will develop documentation and provide templates and support for setting up new scripts and workflows

Changes to Allas and cloud services

- New hardware for Allas and Pouta will also be installed as part of DL2026 program
- New version of Allas with more storage capacity coming in 2026
 - "Allas 2" will only support S3 interface swift not supported
 - Data will not be automatically migrated CSC will develop tools and documentation to help with migration in 2026

Pouta

- More GPUs, possibility to make available in Rahti
- Also storage and CPU resource
- ePouta updated this year, cPouta later in 2026

DL2026 outreach project

 Project's aim is to inform about the DL2026 infrastructure renewal and help users to migrate to and use the new systems

How?

- Presentation, documentation, selflearning materials, blog posts, ...
- docs.csc.fi/roihu

Invite us to tell you more!

 We are happy to give a tailored presentation for your lab, department or university about DL2026, Roihu, or CSC services in general

Contact us via: servicedesk@csc.fi

Share your needs and give us feedback!

Follow us

LinkedIn

<u>Instagram</u>

Facebook

YouTube

csc.fi