ICT Solutions for Brilliant Minds

CSC

Writing batch job scripts: Introduction and allocating CPU resources

Maria Dimitrova, CSC

The anatomy of a computer

- CPU
- RAM memory
- Disk space
- GPU

2

Photos by: Maria Dimitrova / CSC; <u>Walter Bichler</u> from <u>Pixabay</u>; <u>Andrey Matveev</u> on <u>Unsplash</u>; Evan-Amos on Wikimedia; <u>Andrey Matveev</u> on <u>Unsplash</u>

Login nodes vs compute nodes

- Calculations on supercomputers are done on dedicated compute nodes. They are not directly accessible from outside.
- Users connect to the supercomputer using ssh to a login node
- Login nodes do not run any calculations
- There are only two login nodes, so make sure you don't occupy them with anything heavy!

Serial jobs

- Some jobs can only be run on one CPU core they are called serial jobs
- Serial jobs should be run on a laptop or another computer unless they are either very small, e.g., a script to process some calculation output or to make a plot

 Exception: some serial jobs might need much more memory than a laptop can offer

Parallel jobs

- Many programs can split calculations among multiple CPU cores they are called **parallel jobs**
- Parallel jobs may run in **shared-memory mode** where all cores see all the working memory

 \circ They can only work on one node

• MPI jobs

- Each CPU core reserves memory for its own portion of the calculation
- $\,\circ\,$ Cores can interact with each other if needed
- They can be spread to as many nodes as needed

 \circ Adding more nodes does not always make the job faster!

The SLURM queuing system

- A workload manager that allocates computing resources in a "fair" and optimal manner
 - $\,\circ\,$ It keeps the compute nodes as busy as possible
 - $\,\circ\,$ It ensures that a single user does not take over all the resources
 - Job priority is determined by the length of the job, the number of CPU cores, the amount of memory, disk space and GPUs requested in the batch job script
- Provides accounting data for estimating job efficiency

The structure of SLURM scripts

- An ordinary bash script gives the commands to be executed on the compute nodes
 - $\,\circ\,\text{E.g.},$ what software to run
- Resources are allocated in lines starting with #SBATCH

General parameters in a script

- A specific name for the job
- The billing project has to be defined
 Check my.csc.fi or type csc-workspaces
- The time to execute the job on the compute node is given in the format:

days-hours:minutes:seconds

- o E.g., 1-06:00:00
- Equivalently: 30:00:00

#!/bin/bash
#SBATCH --job-name=myTest
#SBATCH --account=<project>
#SBATCH --time=02:00:00
#SBATCH --mem-per-cpu=2G
#SBATCH --partition=small

module load myprog/1.2.3

srun myprog -i input -o output

https://docs.csc.fi/computing/running/creating-job-scripts-puhti/

Partition limitations

- There are multiple partitions with different limitations regarding the amount of resources that can be allocated
- Details can be seen using
 \$ sjstat -c
- <u>https://docs.csc.fi/computing/running/batch-job-partitions/</u>

Scheduling pool data:

Pool	Memory	Cpus	Total	Usable	Free	Other Traits
small*	382000Mb	40	 92	92	0	type_l
small*	190000Mb	40	478	478	1	type_m
small*	190000Mb	40	44	44	0	type_m,type_io
small*	382000Mb	40	38	38	0	type_l,type_io
large	382000Mb	40	92	92	0	type_l
large	190000Mb	40	478	478	1	type_m
large	190000Mb	40	44	44	0	type_m,type_io
large	382000Mb	40	38	38	0	type_l,type_io
test	190000Mb	40	6	6	5	type_m
longrun	382000Mb	40	92	92	0	type_l
longrun	190000Mb	40	478	478	1	type_m
longrun	190000Mb	40	44	44	0	type_m,type_io
longrun	382000Mb	40	38	38	0	type_l,type_io
fmi	190000Mb	80	238	238	55	type_m_ht
fmitest	190000Mb	80	2	2	2	type_m_ht
hugemem	764000Mb	40	12	12	0	type_xl,type_io
hugemem	1532000Mb	40	6	6	0	type_bigmem
hugemem_l	764000Mb	40	12	12	0	<pre>type_xl,type_io</pre>
hugemem_l	1532000Mb	40	6	6	0	type_bigmem
gputest	382000Mb	40	2	1	1	type_gpu
gpu	382000Mb	40	78	78	6	type_gpu
interacti	190000Mb	40	4	4	0	type_m,type_io
interacti	382000Mb	40	2	2	0	type_l,type_io

CSC

10

Requesting CPUs for serial and shared-memory jobs

- You need to request one node: #SBATCH --nodes=1
 - $\,\circ\,$ This ensures that all CPU cores will be on the same node
- And you need to specify that all reserved CPU cores will be used for your calculation: #SBATCH --ntasks=1
- The number of CPU cores for the calculations are given by #SBATCH --cpus-per-task=20

https://docs.csc.fi/computing/running/creating-job-scripts-puhti/

Requesting CPUs for MPI jobs

- You can define the number of nodes: #SBATCH --nodes=2
- And you need to specify that all reserved CPU cores are to be used for your calculation: #SBATCH --ntasks=80

https://docs.csc.fi/computing/running/creating-job-scripts-puhti/

A note about logical and physical CPU cores

- A CPU has multiple individual cores that execute the calculations
- Some CPUs support hyperthreading

 \circ There are two logical cores for every physical core

 $\,\circ\,$ It is not necessary more efficient to use it on a server

• On Puhti:

20 physical cores per CPU

- 2 CPUs per node
- -> 40 cores per node

Photo by Fritzchens Fritz on Flickr: http://flic.kr/p/2nXpyah

Executing parallel jobs

- A job can be run in parallel using the command srun srun myprog
- Often, software will only run in serial mode unless you specify the srun command!

How to use the hardware efficiently?

Check out the CSC training materials and courses:
 <u>https://www.csc.fi/training</u>

Materials from previous courses:

ohttps://docs.csc.fi/support/training-material/

 CSC Computing Environment Moodle course:
 https://e-learn.csc.fi/enrol/index.php?id=76

 You can always ask us in case of doubt!

servicedesk@csc.fi