
Writing an API to expose 
your tools / services

Case: Kielipankki / The Language Bank of Finland @ CSC

User Support Coffee
Sam Hardwick 30.11.2022



History of tools at Kielipankki

Our most obvious tools are those used to browse our corpora (eg. 
korp.csc.fi), but we make, host and curate a bunch of other tools as 
well (kielipankki.fi/tools)

korp.csc.fi
http://kielipankki.fi/tools


History of tools at Kielipankki

Kielipankki ingests a lot of data:
• Newspaper & book collections, with existing metadata
• Internet data
• Speech

This needs a lot of processing, annotating and enriching for which we 
have internal tools



History of tools at Kielipankki

What kind of processing?

• linguistic analysis: lemmatization, morphology, syntax, ...
• named entities: persons, places, organizations, events, ...
• sentiment: positive, neutral, negative
• classification: topic, genre, ...
• automatic speech recognition 



Getting to the users

Many of our tools produce intermediate results, which are not 
interesting in themselves, but may be used to make other tools.



Getting to the users

Some tasks (ASR) are highly in demand but our service was hard to use 
(log in to Puhti). How do we encourage integration (or even use)?



Endpoints

Idea: we could have API endpoints for different outputs:

kielipankki.rahtiapp.fi/text/fi/{postag, nertag, sentiment}
kielipankki.rahtiapp.fi/audio/asr/fi/submit_file
…

No end-user installation, updates and scalability are up to the service.



A file is submitted

You get a UUID and poll for results

We can verbosely include model 
data in each response to support 
data versioning end references

How long did it take? We also have a 
load / queue endpoint

Confidence score, possibly multiple 
responses, word alignment, 
diarization & punctuation 
forthcoming



Endpoints
“That’s nice, but sounds hard”

Rahti (OpenShift / Kubernetes / Docker)

nginx

ASR nertag

redis
submit job

submit results

query results



Endpoints – you don’t need a lot of code

Inside the container:

ASR
Gunicorn

Flask

Our precious 
server code

Dockerfile
FROM nice-framework-

with-everything …

requirements.txt

python-bindings-for-
everything

Some yaml 
configuration for 

Kubernetes

asr-serve:
build: ..
expose: 5001

..



Endpoints

Now scaling is easy, in theory:



Integration

Our demo site
uses the ASR
endpoint to
do ASR, but
we also got a
very nice
third-party 
integration 
with it


